컨텐츠 바로가기

11.23 (토)

이슈 미래 모빌리티 생태계

슈퍼브에이아이 오토라벨링, 복잡한 자율주행 데이터도 정확하고 빠르게

댓글 첫 댓글을 작성해보세요
주소복사가 완료되었습니다
전자신문

슈퍼브에이아이 스위트 자율주행 데이터 라벨링 사진=슈퍼브에이아이

<이미지를 클릭하시면 크게 보실 수 있습니다>


슈퍼브에이아이는 자사 '스위트' 오토라벨링 기능을 통해 자율주행 이미지 데이터 라벨링 작업효율이 대폭 향상됐다고 22일 밝혔다.

자율주행은 4차 산업혁명 인공지능(AI) 산업에서 실생활에 가장 밀접하게 적용될 것으로 예상되는 분야 중 하나다. 슈퍼브에이아이는 올해 4월부터 공항 내 교통 약자 지원을 위한 자율주행 시스템 개발 프로젝트 데이터 구축 작업에 스위트의 오토라벨링이 활용된다고 설명했다.

슈퍼브에이아이에 따르면 오토라벨링을 사용하지 않았던 4월에는 시간당 평균 6.57개 이미지 데이터를 처리했다. 오토라벨링을 사용한 8월에는 작업 효율이 7.64배 향상되어 시간당(1인 작업 기준) 평균 50.25개 이미지 데이터를 처리한 것으로 분석됐다.

자율주행은 안전이 중요시되는 산업 특성상 데이터 처리에도 섬세한 분류가 필요하다. 하나의 이미지 안에도 라벨링을 해야 하는 객체 수가 많아 데이터 처리 작업 소요 시간이 타 분야 대비 많이 긴 편이다.

슈퍼브에이아이는 이번 자율주행 프로젝트와 관련해 기존 6단계로 진행되던 데이터 라벨링 작업을 3단계로 감소시켰다. 기존에는 검수자가 검수 후 내용 수정을 요청하면 작업자가 다시 내용을 받아 수정했다. 오토라벨링이 검수 요청한 것을 검수자가 바로 확인, 수정하면서 작업단계가 대폭 줄어들었다.

슈퍼브에이아이 오토라벨링은 작업별 난도를 산출하고, 이에 따라 사람의 검수가 필요한 작업이 무엇인지 스스로 판단한다. 이로 인해 사람이 직접 손으로 단순 데이터 라벨링을 하는 작업은 거의 사라지고, 난도가 높은 일부 작업에 대해서만 검수가 진행돼 더욱 높은 생산성을 담보한다.

김현수 슈퍼브에이아이 대표는 “이번 프로젝트를 통해 스위트 오토라벨링이 자율주행처럼 복잡한 데이터 라벨링을 필요로 하는 분야에서도 효율을 낼 수 있다는 것을 증명했다”면서 “정확하면서도 빠른 데이터 라벨링 기술이 AI 산업 전반의 시간적 효율성을 개선시킬 것”이라고 말했다.

김시소기자 siso@etnews.com

[Copyright © 전자신문. 무단전재-재배포금지]


기사가 속한 카테고리는 언론사가 분류합니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.